NAG Toolbox for MATLAB

f04fa

1 Purpose

f04fa calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations.

2 Syntax

```
[d, e, b, ifail] = f04fa(job, d, e, b, 'n', n)
```

3 Description

f04fa is based on the LINPACK routine SPTSL (see Dongarra et al. 1979) and solves the equations

$$Tx = b$$
,

where T is a real n by n symmetric positive-definite tridiagonal matrix, using a modified symmetric Gaussian elimination algorithm to factorize T as $T = MKM^{T}$, where K is diagonal and M is a matrix of multipliers as described in Section 8.

When the input parameter **job** is supplied as 1, then the function assumes that a previous call to f04fa has already factorized T; otherwise **job** must be supplied as 0.

4 References

Dongarra J J, Moler C B, Bunch J R and Stewart G W 1979 LINPACK Users' Guide SIAM, Philadelphia

5 Parameters

5.1 Compulsory Input Parameters

1: **job – int32 scalar**

Specifies the job to be performed by f04fa as follows:

```
job = 0
```

The matrix T is factorized and the equations Tx = b are solved for x.

job = 1

The matrix T is assumed to have already been factorized by a previous call to f04fa with $\mathbf{job} = 0$; the equations Tx = b are solved for x.

2: d(n) – double array

If job = 0, d must contain the diagonal elements of T.

If $\mathbf{job} = 1$, **d** must contain the diagonal matrix K, as returned by a previous call of f04fa with $\mathbf{job} = 0$.

3: e(n) – double array

If job = 0, e must contain the superdiagonal elements of T, stored in e(2) to e(n).

If $\mathbf{job} = 1$, \mathbf{e} must contain the off-diagonal elements of the matrix M, as returned by a previous call of f04fa with $\mathbf{job} = 0$. $\mathbf{e}(1)$ is not used.

[NP3663/21] f04fa.1

f04fa NAG Toolbox Manual

4: b(n) – double array

The right-hand side vector b.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The dimension of the arrays \mathbf{d} , \mathbf{e} , \mathbf{b} . (An error is raised if these dimensions are not equal.) n, the order of the matrix T.

Constraint: $\mathbf{n} \geq 1$.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: d(n) – double array

If job = 0, d contains the diagonal matrix K of the factorization.

If job = 1, **d** is unchanged.

2: e(n) – double array

If $\mathbf{job} = 0$, $\mathbf{e}(2)$ to $\mathbf{e}(n)$ are overwritten by the off-diagonal elements of the matrix M of the factorization.

If job = 1, e is unchanged.

3: b(n) – double array

The array contains the solution vector x.

4: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

```
On entry, \mathbf{n} < 1, or \mathbf{job} \neq 0 or 1.
```

ifail = 2

The matrix T is either not positive-definite or is nearly singular. This failure can only occur when $\mathbf{job} = 0$ and inspection of the elements of \mathbf{d} will give an indication of why failure has occurred. If an element of \mathbf{d} is close to zero, then T is probably nearly singular; if an element of \mathbf{d} is negative but not close to zero, then T is not positive-definite.

overflow

If overflow occurs during the execution of this function, then either T is very nearly singular or an element of the right-hand side vector b is very large. In this latter case the equations should be scaled so that no element of b is very large. Note that to preserve symmetry it is necessary to scale by a transformation of the form $(PTP^T)b = Px$, where P is a diagonal matrix.

f04fa.2 [NP3663/21]

underflow

Any underflows that occur during the execution of this function are harmless.

7 Accuracy

The computed factorization (see Section 8) will satisfy the equation

$$MKM^{\mathrm{T}} = T + E$$

where $\|\mathbf{e}\|_{p} \leq 2\epsilon \|T\|_{p}$, $p = 1, F, \infty$,

 ϵ being the *machine precision*. The computed solution of the equations Tx = b, say \bar{x} , will satisfy an equation of the form

$$(T+F)\bar{x}=b,$$

where F can be expected to satisfy a bound of the form

$$||F|| \leq \alpha \epsilon ||T||,$$

 α being a modest constant. This implies that the relative error in \bar{x} satisfies

$$\frac{\|\bar{x} - x\|}{\|x\|} \le c(T)\alpha\epsilon,$$

where c(T) is the condition number of T with respect to inversion. Thus if T is nearly singular, \bar{x} can be expected to have a large relative error.

8 Further Comments

The time taken by f04fa is approximately proportional to n.

The function eliminates the off-diagonal elements of T by simultaneously performing symmetric Gaussian elimination from the top and the bottom of T. The result is that T is factorized as

$$T = MKM^{\mathrm{T}},$$

where K is a diagonal matrix and M is a matrix of the form

j being the integer part of n/2. (For example when n = 5, j = 2.) The diagonal elements of K are returned in **d** with k_i in the *i*th element of **d** and m_i is returned in the *i*th element of **e**.

The function fails with **ifail** = 2 if any diagonal element of K is nonpositive. It should be noted that T may be nearly singular even if all the diagonal elements of K are positive, but in this case at least one element of K is almost certain to be small relative to ||T||. If there is any doubt as to whether or not T is nearly singular, then you should consider examining the diagonal elements of K.

[NP3663/21] f04fa.3

f04fa NAG Toolbox Manual

9 Example

```
job = int32(0);
d = [4;
     10;
     29;
     25;
     5];
e = [-1.893585205078129;
     -2;
     -6;
     15;
     8];
b = [6;
     9;
     2;
     14;
     7];
[dOut, eOut, bOut, ifail] = f04fa(job, d, e, b)
dOut =
    4.0000
    9.0000
   6.5574
   12.2000
    5.0000
eOut =
   -1.8936
   -0.5000
   -0.6667
    1.2295
   1.6000
bOut =
    2.5000
    2.0000
   1.0000
   -1.0000
    3.0000
ifail =
           0
```

f04fa.4 (last) [NP3663/21]